Sinica Semantic Parser for ESWC'14 Concept-Level Semantic Analysis Challenge
نویسندگان
چکیده
We present a semantic parsing system to decompose a sentence into semantic-expressions/concepts for ESWC’14 semantic analysis challenge. The proposed system has a pipeline architecture, and is based on syntactic parsing and semantic role labeling of the candidate sentence. For the former task, we use Stanford English parser; and for the later task, we use an in-house developed semantic role labeling system. From the syntactically and semantically annotated sentence, the concepts are formulated using a set of hand-build concept-formulation patterns. We compare the proposed system’s performance to SenticNet with the help of few examples.
منابع مشابه
Feature Engineering in Persian Dependency Parser
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...
متن کاملPolarity Detection of Online Reviews Using Sentiment Concepts: NCU IISR Team at ESWC-14 Challenge on Concept-Level Sentiment Analysis
With the introduction of social networks, blogs, wikis, etc., the users’ behavior and their interaction in the Web have changed. As a consequence, people express their opinions and sentiments in a totally different way with respect to the past. All this information hinders potential business opportunities, especially within the advertising world, and key stakeholders need to catch up with the l...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملTowards constructing an Integrative, Multi-Level Model for Cognition: The Function of Semantic Networks
Integrated approaches try to connect different constructs in different theories and reinterpret them using a common conceptual framework. In this research, using the concept of processing levels, an integrated, three-level model of the cognitive systems has been proposed and evaluated. Processing levels are divided into three categories of Feature-Oriented, Semantic and Conceptual Level based o...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014